Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Sci Rep ; 14(1): 8969, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637619

RESUMO

Duchenne muscular dystrophy (DMD) patients exhibit a late left ventricular systolic dysfunction preceded by an occult phase, during which myocardial fibrosis progresses and some early functional impairments can be detected. These latter include electrocardiographic (ECG) and heart rate variability (HRV) abnormalities. This longitudinal study aimed at describing the sequence of ECG and HRV abnormalities, using Holter ECG in the GRMD (Golden retriever muscular dystrophy) dog model, known to develop a DMD-like disease, including cardiomyopathy. Most of the known ECG abnormalities described in DMD patients were also found in GRMD dogs, including increased heart rate, prolonged QT and shortened PR intervals, ventricular arrhythmias, and several of them could be detected months before the decrease of fractional shortening. The HRV was impaired like in DMD patients, one of the earliest evidenced abnormalities being a decrease in the very low frequency (VLF) component of the power spectrum. This decrease was correlated with the further reduction of fractional shortening. Such decreased VLF probably reflects impaired autonomic function and abnormal vasomotor tone. This study provides new insights into the knowledge of the GRMD dog model and DMD cardiomyopathy and emphasizes the interest to monitor the VLF power in DMD patients, still unexplored in this disease, whilst it is highly predictive of deleterious clinical events in many other pathological conditions.


Assuntos
Cardiomiopatias , Distrofia Muscular de Duchenne , Humanos , Cães , Animais , Distrofia Muscular de Duchenne/patologia , Frequência Cardíaca , Eletrocardiografia Ambulatorial , Estudos Longitudinais
2.
Neuromuscul Disord ; 36: 6-15, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306719

RESUMO

The aim of this study was to identify key routinely used myopathologic biomarkers of FSHD1. Needle muscle biopsies were taken in 34 affected muscles (m. quadriceps femoris (QF), n = 20, m. tibialis anterior (TA), n = 13, m. biceps brachii, n = 1) from 22 patients (age, 53.5 (10) years; M = 12, F = 10). Eleven patients had more than one biopsy (2xQF, n = 1; QF+TA, n = 9; 2xQF+TA, n = 1). Histochemistry, immunoperoxidase, and immunofluorescence stainings were performed and compared to age and muscle type matched muscle specimens of 11 healthy controls. Myopathologic features observed in our FSHD1 cohort were internalized nuclei, type 1 fibre hypertrophy and NADH central clearances/cores. We observed a prominent inflammatory response with MAC deposits, MHC I expression, and muscle regeneration that correlated with the inflammatory score. Our up-to-date characterization of FSHD1 points towards MHC I, MAC, and embryonic Myosin Heavy Chain/muscle regeneration as useful myopathologic readouts of FSHD1.


Assuntos
Distrofia Muscular Facioescapuloumeral , Humanos , Pessoa de Meia-Idade , Complexo de Ataque à Membrana do Sistema Complemento , Biópsia , Músculo Esquelético , Regeneração
3.
Stem Cell Reports ; 19(1): 84-99, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38101399

RESUMO

Driving efficient and pure skeletal muscle cell differentiation from pluripotent stem cells (PSCs) has been challenging. Here, we report an optimized protocol that generates skeletal muscle progenitor cells with high efficiency and purity in a short period of time. Human induced PSCs (hiPSCs) and murine embryonic stem cells (mESCs) were specified into the mesodermal myogenic fate using distinct and species-specific protocols. We used a specific maturation medium to promote the terminal differentiation of both human and mouse myoblast populations, and generated myotubes associated with a large pool of cell-cycle arrested PAX7+ cells. We also show that myotube maturation is modulated by dish-coating properties, cell density, and percentage of myogenic progenitor cells. Given the high efficiency in the generation of myogenic progenitors and differentiated myofibers, this protocol provides an attractive strategy for tissue engineering, modeling of muscle dystrophies, and evaluation of new therapeutic approaches in vitro.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Animais , Camundongos , Células Cultivadas , Fibras Musculares Esqueléticas , Diferenciação Celular , Desenvolvimento Muscular , Músculo Esquelético
4.
J Cachexia Sarcopenia Muscle ; 14(6): 2520-2531, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37909859

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a progressive muscle degenerative disorder, culminating in a complete loss of ambulation, hypertrophic cardiomyopathy and a fatal cardiorespiratory failure. Necroptosis is the form of necrosis that is dependent upon the receptor-interacting protein kinase (RIPK) 3; it is involved in several inflammatory and neurodegenerative conditions. We previously identified RIPK3 as a key player in the acute myonecrosis affecting the hindlimb muscles of the mdx dystrophic mouse model. Whether necroptosis also mediates respiratory and heart disorders in DMD is currently unknown. METHODS: Evidence of activation of the necroptotic axis was examined in dystrophic tissues from Golden retriever muscular dystrophy (GRMD) dogs and R-DMDdel52 rats. A functional assessment of the involvement of necroptosis in dystrophic animals was performed on mdx mice that were genetically depleted for RIPK3. Dystrophic mice aged from 12 to 18 months were analysed by histology and molecular biology to compare the phenotype of muscles from mdxRipk3+/+ and mdxRipk3-/- mice. Heart function was also examined by echocardiography in 40-week-old mice. RESULTS: RIPK3 expression in sartorius and biceps femoris muscles from GRMD dogs positively correlated to myonecrosis levels (r = 0.81; P = 0.0076). RIPK3 was also found elevated in the diaphragm (P ≤ 0.05). In the slow-progressing heart phenotype of GRMD dogs, the phosphorylated form of RIPK1 at the Serine 161 site was dramatically increased in cardiomyocytes. A similar p-RIPK1 upregulation characterized the cardiomyocytes of the severe DMDdel52 rat model, associated with a marked overexpression of Ripk1 (P = 0.007) and Ripk3 (P = 0.008), indicating primed activation of the necroptotic pathway in the dystrophic heart. MdxRipk3-/- mice displayed decreased compensatory hypertrophy of the heart (P = 0.014), and echocardiography showed a 19% increase in the relative wall thickness (P < 0.05) and 29% reduction in the left ventricle mass (P = 0.0144). Besides, mdxRipk3-/- mice presented no evidence of a regenerative default or sarcopenia in skeletal muscles, moreover around 50% less affected by fibrosis (P < 0.05). CONCLUSIONS: Our data highlight molecular and histological evidence that the necroptotic pathway is activated in degenerative tissues from dystrophic animal models, including the diaphragm and the heart. We also provide the genetic proof of concept that selective inhibition of necroptosis in dystrophic condition improves both histological features of muscles and cardiac function, suggesting that prevention of necroptosis is susceptible to providing multiorgan beneficial effects for DMD.


Assuntos
Cardiomiopatias , Distrofia Muscular de Duchenne , Animais , Cães , Camundongos , Ratos , Distrofia Muscular de Duchenne/genética , Camundongos Endogâmicos mdx , Modelos Animais de Doenças , Cardiomiopatias/etiologia , Proteínas Quinases
5.
Acta Neuropathol Commun ; 11(1): 167, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858263

RESUMO

Duchenne muscular dystrophy (DMD) is a devastating X-linked muscular disease, caused by mutations in the DMD gene encoding Dystrophin and affecting 1:5000 boys worldwide. Lack of Dystrophin leads to progressive muscle wasting and degeneration resulting in cardiorespiratory failure. Despite the absence of a definitive cure, innovative therapeutic avenues are emerging. Myopathologic studies are important to further understand the biological mechanisms of the disease and to identify histopathologic benchmarks for clinical evaluations. We conducted a myopathologic analysis on twenty-four muscle biopsies from DMD patients, with particular emphasis on regeneration, fibro-adipogenic progenitors and muscle stem cells behavior. We describe an increase in content of fibro-adipogenic progenitors, central orchestrators of fibrotic progression and lipid deposition, concurrently with a decline in muscle regenerative capacity. This regenerative impairment strongly correlates with compromised activation and expansion of muscle stem cells. Furthermore, our study uncovers an early acquisition of a senescence phenotype by DMD-afflicted muscle stem cells. Here we describe the myopathologic trajectory intrinsic to DMD and establish muscle stem cell senescence as a pivotal readout for future therapeutic interventions.


Assuntos
Distrofia Muscular de Duchenne , Células Satélites de Músculo Esquelético , Humanos , Masculino , Distrofina/genética , Fibrose , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Regeneração/genética , Senescência Celular/genética
6.
Stem Cell Res Ther ; 14(1): 294, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833800

RESUMO

Ever since its introduction as a genetic tool, the Cre-lox system has been widely used for molecular genetic studies in vivo in the context of health and disease, as it allows time- and cell-specific gene modifications. However, insertion of the Cre-recombinase cassette in the gene of interest can alter transcription, protein expression, or function, either directly, by modifying the landscape of the locus, or indirectly, due to the lack of genetic compensation or by indirect impairment of the non-targeted allele. This is sometimes the case when Cre-lox is used for muscle stem cell studies. Muscle stem cells are required for skeletal muscle growth, regeneration and to delay muscle disease progression, hence providing an attractive model for stem cell research. Since the transcription factor Pax7 is specifically expressed in all muscle stem cells, tamoxifen-inducible Cre cassettes (CreERT2) have been inserted into this locus by different groups to allow targeted gene recombination. Here we compare the two Pax7-CreERT2 mouse lines that are mainly used to evaluate muscle regeneration and development of pathological features upon deletion of specific factors or pathways. We applied diverse commonly used tamoxifen schemes of CreERT2 activation, and we analyzed muscle repair after cardiotoxin-induced injury. We show that consistently the Pax7-CreERT2 allele targeted into the Pax7 coding sequence (knock-in/knock-out allele) produces an inherent defect in regeneration, manifested as delayed post-injury repair and reduction in muscle stem cell numbers. In genetic ablation studies lacking proper controls, this inherent defect could be misinterpreted as being provoked by the deletion of the factor of interest. Instead, using an alternative Pax7-CreERT2 allele that maintains bi-allelic Pax7 expression or including appropriate controls can prevent misinterpretation of experimental data. The findings presented here can guide researchers establish appropriate experimental design for muscle stem cell genetic studies.


Assuntos
Haploinsuficiência , Células Satélites de Músculo Esquelético , Camundongos , Animais , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Haploinsuficiência/genética , Tamoxifeno/farmacologia , Integrases/genética , Integrases/metabolismo , Células-Tronco/metabolismo , Músculos , Células Satélites de Músculo Esquelético/metabolismo , Músculo Esquelético/metabolismo
7.
J Cell Sci ; 136(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37589341

RESUMO

Bioenergetic metabolism is a key regulator of cellular function and signaling, but how it can instruct the behavior of cells and their fate during embryonic development remains largely unknown. Here, we investigated the role of glucose metabolism in the development of avian trunk neural crest cells (NCCs), a migratory stem cell population of the vertebrate embryo. We uncovered that trunk NCCs display glucose oxidation as a prominent metabolic phenotype, in contrast to what is seen for cranial NCCs, which instead rely on aerobic glycolysis. In addition, only one pathway downstream of glucose uptake is not sufficient for trunk NCC development. Indeed, glycolysis, mitochondrial respiration and the pentose phosphate pathway are all mobilized and integrated for the coordinated execution of diverse cellular programs, epithelial-to-mesenchymal transition, adhesion, locomotion, proliferation and differentiation, through regulation of specific gene expression. In the absence of glucose, the OXPHOS pathway fueled by pyruvate failed to promote trunk NCC adaptation to environmental stiffness, stemness maintenance and fate-decision making. These findings highlight the need for trunk NCCs to make the most of the glucose pathway potential to meet the high metabolic demands appropriate for their development.


Assuntos
Glucose , Crista Neural , Codorniz , Codorniz/crescimento & desenvolvimento , Codorniz/metabolismo , Animais , Crista Neural/crescimento & desenvolvimento , Crista Neural/metabolismo , Glucose/metabolismo , Tubo Neural/citologia , Células Cultivadas , Técnicas In Vitro , Fosforilação Oxidativa , Redes e Vias Metabólicas , Adesão Celular
8.
Development ; 150(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37272529

RESUMO

The mechanism of pattern formation during limb muscle development remains poorly understood. The canonical view holds that naïve limb muscle progenitor cells (MPCs) invade a pre-established pattern of muscle connective tissue, thereby forming individual muscles. Here, we show that early murine embryonic limb MPCs highly accumulate pSMAD1/5/9, demonstrating active signaling of bone morphogenetic proteins (BMP) in these cells. Overexpression of inhibitory human SMAD6 (huSMAD6) in limb MPCs abrogated BMP signaling, impaired their migration and proliferation, and accelerated myogenic lineage progression. Fewer primary myofibers developed, causing an aberrant proximodistal muscle pattern. Patterning was not disturbed when huSMAD6 was overexpressed in differentiated muscle, implying that the proximodistal muscle pattern depends on BMP-mediated expansion of MPCs before their differentiation. We show that limb MPCs differentially express Hox genes, and Hox-expressing MPCs displayed active BMP signaling. huSMAD6 overexpression caused loss of HOXA11 in early limb MPCs. In conclusion, our data show that BMP signaling controls expansion of embryonic limb MPCs as a prerequisite for establishing the proximodistal muscle pattern, a process that involves expression of Hox genes.


Assuntos
Proteínas Morfogenéticas Ósseas , Músculo Esquelético , Animais , Humanos , Camundongos , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/fisiologia , Genes Homeobox , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Proteína Smad6/metabolismo
9.
PLoS Genet ; 19(6): e1010781, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37267426

RESUMO

Four SIX homeoproteins display a combinatorial expression throughout embryonic developmental myogenesis and they modulate the expression of the myogenic regulatory factors. Here, we provide a deep characterization of their role in distinct mouse developmental territories. We showed, at the hypaxial level, that the Six1:Six4 double knockout (dKO) somitic precursor cells adopt a smooth muscle fate and lose their myogenic identity. At the epaxial level, we demonstrated by the analysis of Six quadruple KO (qKO) embryos, that SIX are required for fetal myogenesis, and for the maintenance of PAX7+ progenitor cells, which differentiated prematurely and are lost by the end of fetal development in qKO embryos. Finally, we showed that Six1 and Six2 are required to establish craniofacial myogenesis by controlling the expression of Myf5. We have thus described an unknown role for SIX proteins in the control of myogenesis at different embryonic levels and refined their involvement in the genetic cascades operating at the head level and in the genesis of myogenic stem cells.


Assuntos
Proteínas de Homeodomínio , Somitos , Camundongos , Animais , Proteínas de Homeodomínio/metabolismo , Diferenciação Celular/genética , Somitos/metabolismo , Desenvolvimento Muscular/genética , Regulação da Expressão Gênica no Desenvolvimento , Músculo Esquelético/metabolismo
10.
J Vis Exp ; (196)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37335124

RESUMO

Skeletal muscle is the largest tissue of the body and performs multiple functions, from locomotion to body temperature control. Its functionality and recovery from injuries depend on a multitude of cell types and on molecular signals between the core muscle cells (myofibers, muscle stem cells) and their niche. Most experimental settings do not preserve this complex physiological microenvironment, and neither do they allow the ex vivo study of muscle stem cells in quiescence, a cell state that is crucial for them. Here, a protocol is outlined for the ex vivo culture of muscle stem cells with cellular components of their niche. Through the mechanical and enzymatic breakdown of muscles, a mixture of cell types is obtained, which is put in 2D culture. Immunostaining shows that within 1 week, multiple niche cells are present in culture alongside myofibers and, importantly, Pax7-positive cells that display the characteristics of quiescent muscle stem cells. These unique properties make this protocol a powerful tool for cell amplification and the generation of quiescent-like stem cells that can be used to address fundamental and translational questions.


Assuntos
Músculo Esquelético , Células Satélites de Músculo Esquelético , Camundongos , Animais , Diferenciação Celular , Divisão Celular , Células-Tronco , Nicho de Células-Tronco/fisiologia
11.
Acta Neuropathol Commun ; 11(1): 48, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36945066

RESUMO

Congenital titinopathies are an emerging group of a potentially severe form of congenital myopathies caused by biallelic mutations in titin, encoding the largest existing human protein involved in the formation and stability of sarcomeres. In this study we describe a patient with a congenital myopathy characterized by multiple contractures, a rigid spine, non progressive muscular weakness, and a novel homozygous TTN pathogenic variant in a metatranscript-only exon: the c.36400A > T, p.Lys12134*. Muscle biopsies showed increased internalized nuclei, variability in fiber size, mild fibrosis, type 1 fiber predominance, and a slight increase in the number of satellite cells. RNA studies revealed the retention of intron 170 and 171 in the open reading frame, and immunoflourescence and western blot studies, a normal titin content. Single fiber functional studies showed a slight decrease in absolute maximal force and a cross-sectional area with no decreases in tension, suggesting that weakness is not sarcomere-based but due to hypotrophy. Passive properties of single fibers were not affected, but the observed increased calcium sensitivity of force generation might contribute to the contractural phenotype and rigid spine of the patient. Our findings provide evidence for a pathogenic, causative role of a metatranscript-only titin variant in a long survivor congenital titinopathy patient with distal arthrogryposis and rigid spine.


Assuntos
Músculo Esquelético , Doenças Musculares , Humanos , Conectina/genética , Conectina/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/genética , Sarcômeros/metabolismo , Fenótipo
12.
Sci Transl Med ; 15(685): eadd5275, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36857434

RESUMO

Duchenne muscular dystrophy (DMD) is a severe and progressive myopathy leading to motor and cardiorespiratory impairment. We analyzed samples from patients with DMD and a preclinical rat model of severe DMD and determined that compromised repair capacity of muscle stem cells in DMD is associated with early and progressive muscle stem cell senescence. We also found that extraocular muscles (EOMs), which are spared by the disease in patients, contain muscle stem cells with long-lasting regenerative potential. Using single-cell transcriptomics analysis of muscles from a rat model of DMD, we identified the gene encoding thyroid-stimulating hormone receptor (Tshr) as highly expressed in EOM stem cells. Further, TSHR activity was involved in preventing senescence. Forskolin, which activates signaling downstream of TSHR, was found to reduce senescence of skeletal muscle stem cells, increase stem cell regenerative potential, and promote myogenesis, thereby improving muscle function in DMD rats. These findings indicate that stimulation of adenylyl cyclase leads to muscle repair in DMD, potentially providing a therapeutic approach for patients with the disease.


Assuntos
Distrofia Muscular de Duchenne , Receptores da Tireotropina , Animais , Ratos , Receptores Acoplados a Proteínas G , Fibras Musculares Esqueléticas , Células-Tronco , Regeneração , Tireotropina
13.
Cells ; 12(4)2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36831249

RESUMO

BACKGROUND: The use of mesenchymal stem cells (MSCs) appears to be a promising therapeutic approach for cardiac repair after myocardial infarction. However, clinical trials have revealed the need to improve their therapeutic efficacy. Recent evidence demonstrated that mitochondria undergo spontaneous transfer from damaged cells to MSCs, resulting in the activation of the cytoprotective and pro-angiogenic functions of recipient MSCs. Based on these observations, we investigated whether the preconditioning of MSCs with mitochondria could optimize their therapeutic potential for ischemic heart disease. METHODS: Human MSCs were exposed to mitochondria isolated from human fetal cardiomyocytes. After 24 h, the effects of mitochondria preconditioning on the MSCs' function were analyzed both in vitro and in vivo. RESULTS: We found that cardiac mitochondria-preconditioning improved the proliferation and repair properties of MSCs in vitro. Mechanistically, cardiac mitochondria mediate their stimulatory effects through the production of reactive oxygen species, which trigger their own degradation in recipient MSCs. These effects were further confirmed in vivo, as the mitochondria preconditioning of MSCs potentiated their therapeutic efficacy on cardiac function following their engraftment into infarcted mouse hearts. CONCLUSIONS: The preconditioning of MSCs with the artificial transfer of cardiac mitochondria appears to be promising strategy to improve the efficacy of MSC-based cell therapy in ischemic heart disease.


Assuntos
Células-Tronco Mesenquimais , Infarto do Miocárdio , Isquemia Miocárdica , Camundongos , Animais , Humanos , Isquemia Miocárdica/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Mitocôndrias Cardíacas/metabolismo , Células-Tronco Mesenquimais/metabolismo
14.
Mol Metab ; 69: 101677, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36693621

RESUMO

OBJECTIVE: Mitochondria fuel most animal cells with ATP, ensuring proper energetic metabolism of organs. Early and extensive mitochondrial dysfunction often leads to severe disorders through multiorgan failure. Hacd2 gene encodes an enzyme involved in very long chain fatty acid (C ≥ 18) synthesis, yet its roles in vivo remain poorly understood. Since mitochondria function relies on specific properties of their membranes conferred by a particular phospholipid composition, we investigated if Hacd2 gene participates to mitochondrial integrity. METHODS: We generated two mouse models, the first one leading to a partial knockdown of Hacd2 expression and the second one, to a complete knockout of Hacd2 expression. We performed an in-depth analysis of the associated phenotypes, from whole organism to molecular scale. RESULTS: Thanks to these models, we show that Hacd2 displays an early and broad expression, and that its deficiency in mice is lethal. Specifically, partial knockdown of Hacd2 expression leads to death within one to four weeks after birth, from a sudden growth arrest followed by cachexia and lethargy. The total knockout of Hacd2 is even more severe, characterized by embryonic lethality around E9.5 following developmental arrest and pronounced cardiovascular malformations. In-depth mechanistic analysis revealed that Hacd2 deficiency causes altered mitochondrial efficiency and ultrastructure, as well as accumulation of oxidized cardiolipin. CONCLUSIONS: Altogether, these data indicate that the Hacd2 gene is essential for energetic metabolism during embryonic and postnatal development, acting through the control of proper mitochondrial organization and function.


Assuntos
Mitocôndrias , Doenças Mitocondriais , Animais , Camundongos , Cardiolipinas , Ácidos Graxos não Esterificados/metabolismo , Hidroliases/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Fosfolipídeos/metabolismo
16.
Matrix Biol ; 112: 90-115, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35963565

RESUMO

Obesity triggers skeletal muscle physio-pathological alterations. However, the crosstalk between adipose tissue and myogenic cells remains poorly understood during obesity. We identified NID-1 among the adipose tissue secreted factors impairing myogenic potential of human myoblasts and murine muscle stem cells in vitro. Mice under High Fat Diet (HFD) displayed increased NID-1 expression in the skeletal muscle endomysium associated with intramuscular fat adipose tissue expansion and compromised muscle stem cell function. We show that NID-1 is highly secreted by skeletal muscle fibro-adipogenic/mesenchymal progenitors (FAPs) during obesity. We demonstrate that increased muscle NID-1 impairs muscle stem cells proliferation and primes the fibrogenic differentiation of FAPs, giving rise to an excessive deposition of extracellular matrix. Finally, we propose a model in which obesity leads to skeletal muscle extracellular matrix remodeling by FAPs, mediating the alteration of myogenic function by adipose tissue and highlighting the key role of NID-1 in the crosstalk between adipose tissue and skeletal muscle.


Assuntos
Adipogenia , Desenvolvimento Muscular , Animais , Diferenciação Celular , Matriz Extracelular , Humanos , Camundongos , Músculo Esquelético/metabolismo , Obesidade/genética , Obesidade/metabolismo
17.
Exp Cell Res ; 420(1): 113275, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35931143

RESUMO

After extensive proliferation during development, the adult skeletal muscle cells remain outside the cell cycle, either as post-mitotic myofibers or as quiescent muscle stem cells (MuSCs, also known as satellite cells). Despite its terminally differentiated state, adult skeletal muscle has a remarkable regeneration potential, driven by MuSCs. Upon injury, MuSC quiescence is reversed to support tissue growth and repair and it is re-established after the completion of muscle regeneration. The distinct cell cycle states and transitions observed in the different myogenic populations are orchestrated by elements of the cell cycle machinery. This consists of i) complexes of cyclins and Cyclin-Dependent Kinases (CDKs) that ensure cell cycle progression and ii) their negative regulators, the Cyclin-Dependent Kinase Inhibitors (CDKIs). In this review we discuss the roles of these factors in developmental and adult myogenesis, with a focus on CDKIs that have emerging roles in stem cell functions.


Assuntos
Ciclinas , Células Satélites de Músculo Esquelético , Ciclo Celular , Diferenciação Celular/fisiologia , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Desenvolvimento Muscular , Músculo Esquelético , Células-Tronco
18.
Acta Neuropathol Commun ; 10(1): 60, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468843

RESUMO

Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disorder caused by mutations in the Dystrophin gene and for which there is currently no cure. To bridge the gap between preclinical and therapeutic evaluation studies, we have generated a rat model for DMD that carries an exon 52 deletion (R-DMDdel52) causing a complete lack of dystrophin protein. Here we show that R-DMDdel52 animals recapitulated human DMD pathophysiological trajectory more faithfully than the mdx mouse model. We report that R-DMDdel52 rats displayed progressive and severe skeletal muscle loss associated with fibrotic deposition, fat infiltration and fibre type switch. Early fibrosis was also apparent in the cardiac muscle. These histological modifications led to severe muscle, respiratory and cardiac functional impairments leading to premature death around 1 year. Moreover, DMD muscle exhibited systemic inflammation with a mixed M1/M2 phenotype. A comparative single cell RNAseq analysis of the diaphragm muscle was performed, revealing cellular populations alteration and molecular modifications in all muscle cell types. We show that DMD fibroadipogenic progenitors produced elevated levels of cartilage oligomeric matrix protein, a glycoprotein responsible for modulating homeostasis of extracellular matrix, and whose increased concentration correlated with muscle fibrosis both in R-DMDdel52 rats and human patients. Fibrosis is a component of tissue remodelling impacting the whole musculature of DMD patients, at the tissue level but most importantly at the functional level. We therefore propose that this specific biomarker can optimize the prognostic monitoring of functional improvement of patients included in clinical trials.


Assuntos
Distrofia Muscular de Duchenne , Animais , Biomarcadores , Proteína de Matriz Oligomérica de Cartilagem/uso terapêutico , Distrofina/metabolismo , Fibrose , Humanos , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/terapia , Ratos
19.
Skelet Muscle ; 12(1): 9, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459219

RESUMO

Skeletal muscle stem cells have a central role in muscle growth and regeneration. They reside as quiescent cells in resting muscle and in response to damage they transiently amplify and fuse to produce new myofibers or self-renew to replenish the stem cell pool. A signaling pathway that is critical in the regulation of all these processes is Notch. Despite the major differences in the anatomical and cellular niches between the embryonic myotome, the adult sarcolemma/basement-membrane interphase, and the regenerating muscle, Notch signaling has evolved to support the context-specific requirements of the muscle cells. In this review, we discuss the diverse ways by which Notch signaling factors and other modifying partners are operating during the lifetime of muscle stem cells to establish an adaptive dynamic network.


Assuntos
Células Satélites de Músculo Esquelético , Diferenciação Celular , Homeostase , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Receptores Notch/metabolismo , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo
20.
Dis Model Mech ; 15(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35244154

RESUMO

Mutations in DNM2 cause autosomal dominant centronuclear myopathy (ADCNM), a rare disease characterized by skeletal muscle weakness and structural anomalies of the myofibres, including nuclear centralization and mitochondrial mispositioning. Following the clinical report of a Border Collie male with exercise intolerance and histopathological hallmarks of CNM on the muscle biopsy, we identified the c.1393C>T (R465W) mutation in DNM2, corresponding to the most common ADCNM mutation in humans. In order to establish a large animal model for longitudinal and preclinical studies on the muscle disorder, we collected sperm samples from the Border Collie male and generated a dog cohort for subsequent clinical, genetic and histological investigations. Four of the five offspring carried the DNM2 mutation and showed muscle atrophy and a mildly impaired gait. Morphological examinations of transverse muscle sections revealed CNM-typical fibres with centralized nuclei and remodelling of the mitochondrial network. Overall, the DNM2-CNM dog represents a faithful animal model for the human disorder, allows the investigation of ADCNM disease progression, and constitutes a valuable complementary tool to validate innovative therapies established in mice.


Assuntos
Dinamina II , Miopatias Congênitas Estruturais , Animais , Cães , Dinamina II/genética , Humanos , Masculino , Camundongos , Debilidade Muscular/patologia , Músculo Esquelético/patologia , Mutação/genética , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...